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ABSTRACT

A nondimensional design technique is developed to obtain the minimum
weight cf structural components (columns, plates, and beams) subjected to an
aerospace environment. Design curves are developed and presented for vari-
ous structural configurations in terms of the applied loads and geometric and
material parameters which can be readily evaluated. The design technique can
be employed to obtain, in a relatively simple and rapid manner, preliminary
estimates of the structural design weight as well as a good approximation to
the final design. The design procedure for minimum weight is illustrated for
a truss-like spar and a wing section which are typical of aerospace structures.
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SECTION I - INTRODUCTION AND SUMMARY

The prime objective of a structural designer is to distribute structural
material in such a manner that it can satisfactorily perform its assigned tasks for
the life of the vehicle with minimum weight and reasonable cost. His job has be-
come more complex as the high performance characteristics required for aerospace
vehicles have exposed the structures to loads at high temperatures for extended
periods of time.

At the inception of the design, the designer must make preliminary esti-
mates of the structural design of the vehicle in order to estimate its weight and its
effect upon the performance. Methods of estimating the minimum weight must be
employed before the design is finalized. The designer must use his ingenuity and
imagination to supplement the present state of the art in order to obtain preliminary
designs of "optimum" structure for the contemplated load and environment history.
This must be done in a relatively rapid and simple manner, considering all logical
types of constructions and configurations.

The design of a minimum weight structure is more complicated than its
analysis. An analysis of the strength of a structure can be readily performed when
given the applicable equations, the geometry, and the material properties. Given,
however, the applied loads and material, it is a much more difficult task to deter-
mine a structure which would withstand the applied load and be of minimum weight.

A nondimensional approach has been employed in this report in order to
make the design techniques applicable to the infinite possible variations in the ma-
terial properties and geometric configurations. The various possible environments
and load histories make it mandatory to consider all materials with modifications
due to the effects of temperature, time, and load since each environment is equiva-
lent to creating a different stress-strain relationship. The choice of the geometric
configuration (area distribution) is also arbitrary and is usually determined by the
designer after considering the applied loads and temperatures and the available
materials. In addition, many analyses are encumbered with empirical constants
which may change with the material, temperatures, etc. These considerations
would make it impractical to develop design curves or to obtain adequate experi-
mental data for each possible combination of environment, material, and geometry.
The nondimensional technique presented in this report permits the designer to
readily evaluate the effects of various modifications upon the minimum weight de-
sign. Such modifications as different materials, different environments, load mag-
nitudes, changing empirical analysis constants or edge fixities can be considered
utilizing the same design graph. Design graphs will usually be required for each
type of construction.

Manuscript released by the author July 1962 for publication as an ASD Technical
Documentary Report.
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Nondimensional equations and graphs are developed to obtain the weight and
cross-sectional description of minimum weight structures for a given load-tempera-
ture history. The solutions are expressed in terms of geometric and material para-
meters which are readily determined from the known boundary conditions, type of
construction, and the stress-strain curve of the material after the contemplated ex-
posure. Various criteria of structural adequacy or material behavior can be em-
ployed to supplement the design procedure by modifying allowables or material para-
meters.

The design procedure for minimum weight is illustrated for a truss-like
spar and a wing section such as may be employed in an aerospace vehicle. The
tension members are designed by an allowable stress which can be determined from
such criteria as the short time static strength or the maximum creep strain, The
design of compression members must also consider optimum distribution of ma-
terials for stability. The unspecified dimensions of a cross section of a compression
member are determined by solving a set of equations defining the load, the stability,
and the minimum weight in terms of these dimensions.

A compression structure can be visualized as a set of deformation springs
in parallel and series. The springs are in parallel if they have the same deforma-
tion pattern (e.g., bending and transverse shear). The springs are in series if the
deformation pattern can occur independently of each other (e.g., bending and local
"wrinkling'"). If the springs are in series then the structure becomes unstable when
the applied load becomes equal to the critical load for the weakest spring. This
critical load can be increased by a redistribution of the area of the cross section
8o as to increase the stiffness of the weakest spring. This is usually done at the
expense of reducing the critical loads of the stiffer springs. The optimum distribu-
tion of the area of the cross section occurs when the weakest springs are made
equally stiff by a judicious selection of the unspecified dimensions. This technique
is sometimes described as the "one horse shay" approach.

Various types of structures designed to withstand compression, shear,
or bending loads are considered. Columns with various types of cross sections
(I-beam, channel, tee, angle, rectangular and circular tubes) are investigated in
detail, although the technique is applicable to many more cross sections. Design
considerations for plate constructions such as solid plate, corrugations, stiffened
plate, and honeycomb sandwich are also analyzed. Bending of corrugation plate and
beams is also investigated. In addition, the effects of combined loadings upon the
design are reviewed.

This report is intended to provide a procedure for the preliminary design
and weight estimation for a minimum weight structure. The final weight will include
construction details and design modifications for additional problems which are not
considered here. It is considered beyond the scope of this report to take into account
the effects of fatigue and thermal stresses upon the minimum weight design. The
failure of the structure due to fatigue or thermal stresses is not sufficiently defined
for design purposes. In addition, the thermal stresses cannot be defined until the

detail design is fixed.

ASD-TDR-62-763 2




SECTION II - ANALYTICAL STUDIES

A, TECHNIQUES

The procedure to obtain a minimum weight design is fairly straightforward.
There exist a number of equations which must be satisfied by the geometry. In
addition, there are subsidiary conditions which indicate the distribution of the
cross-sectional area required to minimize the weight. The design technique for
structures in compression or shear is described below for columns in compression
in order to aid in the visualization of the procedure. This technique is equally
applicable to plates and tubes in compression or shear. The design technique
for structures in bending is only slightly different and is best described in Part E
of this section (Bending Members).

1. APPROACH

The selection of a type of construction results in a number of unknown
dimensions of the structural cross section that must be specified by the designer.
As an example, the diameter (d) and wall thickness (t) of a minimum weight cy-
lindrical column of a prescribed length (b) and end fixity (Cc) must be determined.

The determination of these unknown dimensions requires the solution
of an equal number of equations defining the geometry. These equations can be
characterized in the following manner.

a, ILoad Equation (P= g A)

The applied load is equal to the product of the allowable stress
and the area of the cross section. This basic equation is employed in designing all
types of minimum weight cross sections and is sufficient to determine the cross
section with one unknown dimension (e. g., solid plate, solid circular tube). The
buckling stress is employed as the allowable compressive stress since buckling and
failure usually occur simultaneously in a minimum weight structure.

b. Stability Equation

The local stability stress of the cross section is made equal to the
over-all stability stress of the structure. This is the ""one horse shay' design
philosophy described previously. Increasing the diameter of a circular tube, while
maintaining a constant cross-sectional area, increases the column stability by in-
creasing the inertia but reduces the local (wrinkling) stability by reducing the''t/d" ratio.
The minimum weight design occurs when the ratio of diameter to column length
"d/b" is a prescribed proportion of the thickness to diameter ratio "'t/d". This
relationship and the applied load equation are sufficient to determine cross sections
with two unknowns. The value of the ""t/d" ratio in terms of the '"d/b' ratio is
substituted into the load equation to obtain the load as a function of the ""d/b" ratio.
Cross sections of more than two unknown dimensions are designed in a similar
manner by employing subsidiary conditions ¢. and d. described below, to represent
the area and inertia of the cross section in terms of two characteristic dimensions.

ASD-TDR-62-763 3




c. Maximum Over-all Stability

The relative distribution of the area in the flanges and webs of
the cross section can be specified by considering the modes of over-all failure. If
the column can only buckle about one axis because of boundary restraints (e.g.,
skins, webs, etc.), the minimum weight is assumed to be obtained when the inertia
of the cross section about this axis is maximum, subject to the constraint thatthe area
and the thickness ratios are stationary. If, however, over-all buckling is possible
about both bending axes, then the equality of the buckling stabilities about each axis
can be employed. This would require that the inertias about each axis be propor-
tional to the end fixities associated with the buckling about that axis. Equations of
these types can be employed to determine the ratio of areas (zz=wh/dt) of the cross-
sectional elements. Cross sections of three unknowns (d, t, w), as exemplified by
bent-up sheets where the ratio of the thicknesses (h/t) is known, can be designed with
the above equations. Caution, however, must be exercised, for cross sections in
which the ratio of the thicknesses is specified, to select the proper characteristic
dimensions of the cross section. The characteristic dimensions must belong to the
least stable of the elements of the cross section, This would ensure that the failing
stress would occur when the maximum over-all stability would equal the lowest of
the local stability stresses. For most cases investigated (summarized in Table 1)
the "t" and "d" of the web are the characteristic dimensions of the cross section,
since it satisfies the following inequality.

2 1/2
(h/t) (Ch/ C) >

d. Maximum Local Stability

When the cross section is defined by four or more unknown
dimensions, then the equality of the local stability of each of the elements of the
cross section must be employed. In addition, symmetry conditions which will max-
imize the inertia and equalize local stabilities are utilized.

Equations of the types described above are employed to obtain
a relationship between the applied load and a characteristic dimension. The solu-
tion of this relationship for the geometry of the minimum weight structure would be
quite simple if the material were linear. Unfortunately, the minimum weight design
almost always occurs at stress levels which are beyond the proportional limit of the
material and thus a direct closed form solution is not possible.

An inverse solution is employed in which a nondimensional load
index (P and a nondimensional stability index (§) are equated to functions of the stress ratio
_ a, Cc /C EA3/ 2
(o/ cro). The load index (e.g., P =(P)( b 2) ( 5/2
¢
expressed in terms of the applied load (P), the known boundary conditions (C C +)
and geometry (b, a 1,03), and the material constants (E A S ) The stabnhty mdex

E 2 :
(e.g., Ep = Ct b (t—d) for a web) is expressed in terms of the material constants,
%
the known boundary conditions, and the unknown dimensions of the cross section.
The procedure is to assume a stress ratio, compute the stability and load indices for
a given type of construction which correspond to the minimum weight design, and to

)for a flanged column) is

ASD-TDR-62-763 4
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TABLE 1 - GEOMETRIC FACTORS FOR COLUMNS

z a as Thick.
Section Defining Ratio
Condition 3 3 )
wh/dt | A/dt  A/wt | 1/d°t I/w't h/t
I-Beam 1+4z 4+1/z|.083+z 1.333 h/t
Y Max I .083| 1.333 - .167 - -
XX
FE—‘;‘_ = =1, ® |2.370 10,480 - |2.450 . -
‘____} z 470 - e.124| - . 667 .500
tn 1, =41 @ | 6a3| 3.584 - | .729 - -
Y yy .250 | - 8.000| - . 667 .500
1
Channel 142z 2+41/z| .083+. 5z .ets'z-m_1 -
W.
t_j Max I .167 | 1.333 - .167 - -
T -
d L @ | 7090 1680 - [4.033 - -
yy 1.366 | - 2.732| - .301 1.000
L h
*F— =1 @172 | 44e - | s - -
yy .639 | - 3.565| - .386 1.000
Tee 1422 241/z|.333-:2> 667 h/t
ECCTa et AZN 1427 28l /L
}i— . Max I 063 | 1.125 - |.111 - -
T XX 5
h L= yy(3) .570 | 2.140 - |.216 - -
W .553 | - 3.81 - .333 .500
1 =41 @1 250 | 1.500 - |.167 - -
yy .356 | - 4.81 - .333 .500

(1) Unspecified h/t is defined by —tll- = (z) 1/2 (Ct/ch)1/4

Specified h/t is defined by sheet metal construction
(2) X-axis and Y-axis are horizontal and vertical references axes, respectively,
for all sections

o
(3) C_CL =1 (Eq. 13¢)

CcX

C
(4) —CEL = 4 (Eq. 13c)

cX

ASD-TDR-62-763




TABLE 1 - GEOMETRIC FACTORS FOR COLUMNS (Cont'd)

Thick.
Section Defining z a, ag Ratio
Condition 3 3 i)
wh/dt | A/dt A/wt | I/d"t I/w't h/t
Angle ©) 14z 1+1/2 .333-'1-%-:-
Y Al
t
Tt Max I_ a2501.125 - | .n - 354
X I {
h
L-i-w An angle free to bend about any axis wouid not buckle about
X or y axes.
Square Tube 2427 .167+.5z
b d—f Max I .167 | 2.333 - |.250 = . 409
N
all i =1 @ |1.000]4.00 - [.e67 - 1. 000
‘ XX yy
C¢ = Ch 1 =41 W 090|280 - |.212 - . 300
XX yy
Circular Tube - - |3.142 = . 393 - -
A,

(1) Specified h/t is defined by —t‘l= z)}/2 (c/ ch)l/ J

(2) X-axis and Y-axis are horizontal and vertical references axes, respectively,
for all sections

o
3) C—°-‘L=1 (Eq. 13c)
cX

C
) —CQY- = 4 (Eq. 13c)
cX

(5) Angle assumed to bend about x axis only

ASD-TDR-62-763 6




- o AT DIV AT DT T T

“rev—_—

AT P Ty S

Sllas ot

A BT

plot these relationships. The design can then be determined by reversing the
process. For a given type of construction, load, and material, a load index
can be computed. The stress ratio can then be obtained from the P vs, cr/cro

plot and the detail design and minimum weight can then be determined with this
stress ratio. The use of these nondimensional design curves results in a rela-
tively simple and rapid method of designing a minimum weight structure and in a
radical reduction in the amount of design data and aids required. The effects of
modifying end fixity, introducirng empirical constants, and considering materials
with various thermal exposures and loading temperatures, can be rapidly evalu-
ated with the same graph. '

In addition, the detail design of a portion of a structure can
sometimes be utilized to design other areas. If the structural arrangement is
maintained over an area of the structure in which the temperatures and airload
intensity are similar, then the detail design of one portion of the area will be a
scale model of all the other portions. This is because the load index for a given
material and temperature will be the saume in all portions and will result in the
same design stress and thickness ratios.

The design technique is illustrated in the examples which
follow (Section III)., The methods of obtaining the load and stability indices
for various types of constructions are illustrated for the columns and summarized
for plates, tubes, and bending members. The evaluation of the geometry and
material parameters is discussed in the remaining parts of this section,

2. GEOMETRV FACTORS

The stability of a structure depends upon the type of construction,
the detail geometry, the over-all geometry, and the edge fixity conditions. The
type of construction, the over-all geometry, and the edge fixity conditions are
known to the designer, and must be employed to obtain the detail geometry. The
type of construction determines the form of the stability equation

(e.g., 0= Ct ER (t/b)2 for a plate), and coupled with the internal edge fixities,

determines the relative distribution of the thickness ratios of the cross-sectional
elements. The over-all geometry (e.g., aspect ratio) and the edge fixity de-
2
termine stability constants (e. g, Ct = i"———é = 3, 62 for an infinitely long
12(1-17)
simply supported pla'e) . The effect of the nonlinearity of the material is reflected
in an effective stability modulus ER which is assumed to be defined knowing the

end fixities. The end fixities determine the ratio of bending and twisting energies
of the structure and result in an expression for the effective modulus in terms of
the secant (ES) and tangent (ET) moduli,

ek

Values of stability constants (or constants from which they can be
derived) as well as expressions for the effective stability moduli in terms of
the edge fixities and aspcct ratios are readily available in the literature (c.g. .,

References 1 through 9). A summary of such values can be found in References
2 and 4,

SRR PRSI P KL SR
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3. MATERIAL FACTORS

The stability of a structure is dependent upon the stress-strain re-
lationship of the material. When the material is linear then only the modulus (E,)
is required to determine the stability stress (up to the allowable stress at which
time the allowable stress governs). In general, however, the design stress for
minimum weight occurs above the proportional limit and recourse must be taken to
employ the actual stress-strain relationship.

The nondimensional approach recommends the use of a mathematical
expression of the stress-strain relationship with three arbitrary constants (E Ar %
B). Thisoffers the widest latitude in matching the actual stress-strain curve whife
still being able to present single design graphs for each type of construction. The
nondimensional form of the stress-strain law is

E, e
‘:o . _% (1-B) +B sinh o/o, (1a)

The formulation is based upon representing the nonlinear material deformations as
an exponential function employing a rate diffusion model of deformations (Reference
7). The formulation is in good agreement with experimental data and has been em-
ployed to approximate creep as well as instantaneous strains, It can be readily
adapted to computation techniques since the nonlinear component is a simple pro-
duct of sinh 9/ (which need be tabulated only once) and 8, rather than an odd power
function, (which would require many tabulations) as is exemplified by the Ramberg-
Osgood representation

E., ¢ n
A _ © 3(6)
= e e e (1b)
Tq7 %9 T\%

The material constants are selected so as to match the initial por-
tion of the stress-strain curve up to the area of interest in the design. This would
require matching the linear and nonlinear portions of the curve up to the vicinity of
the yield stress. Selecting E , equal to the initial slope of the curve matches the
initial portion of the curve. ’ﬁ-le remaining constants % and 8- are selected to match

the nonlinear portion of the curve. One procedure is to plot the strain deviation
(8= ¢ - °'/EA) on a log scale versus values of the stress () on a linear scale (Fig-

ure 1a). This plot would result in a straight line for the plastic portion of the stress-
strain curve if the formulation was exact. Selecting values of % and 8 which depend
upon the best straight line would result in a good approximation to the actual curve
with the error in the stress represented by the horizontal distance between an

actual point and the straight line in the referenced plot. The material constants o
and B are determined, after two points (0‘,81) and (0'2,82) on the best straight line®
are selected, in the following manner:

99

%~ 2.3 log(62/61) (lc)
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T

1w

R & o2 2 o

003}
L. ¢
Y
b 002}—
v
P STRESS ERROR
[}
4
o
g 00l
>
w
o
Z
<
14
-
[72]
%27 %
Oo =~ 2.3 1log (82/81)
logB= log (282 EA/a'o) = 0'2/2. 3o,
ol | ! | | \

STRESS- o

Figure la, Strain Deviation vs. Stress

ASD-TDR-62-763 9




28, E o
and log 3 =log < 2 A) 2

%, T 2.3 A
E ) 8
_ A 2\ _ P2y o
=log (_&_2__cr1 )-!-log (4.682 log8_) [1og(81)] 2 (1d)
1 ————————

0'2 -0'1

Requiring the approximation of the stress-strain curve to pass through
two nonlinear points on the actual curve is equivalent to selecting the stress and devia-

tion of these two points to establish the straight line. As an example, if the .001 and
. 002 offset stresses are employed, then

o, =1 442 (9, - 9,) (le)
E .3010,

and log B =log (;—:Acr—) - 2,558 - ;—_—02— (1f)
2 1 2 1

results in a computed stress-strain curve [Eq.(la)] which passes through the yield
stress (02) and the . 001 offset stress (01) and which has an initial modulus equal to E

The Ramberg-0Osgood Parameters (E A’ 0: 7 n) can be transformed
to the above parameters (EA, cro,ﬁ )} by making the curve pass through the same

control points (cr7 and 5-85) This results in the following formulae:

1-(c_ /o
o,o- - (.85 .7) o7 (1g)
o1 (.88178)
@/ (o, /a)
and 8= idio (1h)
sinh 7 - o-_7
c, T,

where 0'85/ o 7 is known or obtained from Figure 3b of Reference 4.

Data available in various texts (References 10 through 19)were ana-
lyzed to obtain the material constants and creep properties employed in the illustra-
tive examples. These constants (Figures 1lb, 2 and 3) should not be viewed as the
best values for the materials investigated but rather as values to be employed in
illustrating the design technique. Variations in the material constants,obtained from
different tests, occurred because of variations in the stress-strain curves for the
same material and temperature. The scatter was more severe with the higher
temperatures and newer materials which are now being developed. Fortunately, the
design stress and minimum weight are not too sensitive to variations of the nonlinear
material constants (co and 8). Engineering judgement was employed in obtaining the

material constants for the illustrative examples.
A statistical analysis of all available data is recommended to obtain

the most probable values of the material constants and to estimate the cffects the
variations have on the design stresses and weights in an actual design.

ASD-TDR-62--763 10

A




0
-30
-25 |- I. TZM ~
- 2 2. RENE' 4l -
-20 | 3. I7-7PH, THI080 =
@ | 4. FS-85 ]
o | S
S-15 5. Ti-6AI-4V -
-|° b

0 PR SR R U N N SE SRR RN T SN TR NN SR N

A l A
o 800 1000 1500 2000 2800
TEMPERATURE-°F

Figure 1b. Material Constants E,, 0 , andlog B vs. Temperature

ASD-TDR-62~763 11




S

VTSNP RS —

TZM—To (9 -log €)(10)73

26 27 28 29 30 3 32 33 34 35 36 37
80 ASBEEEEN RN RN SRR R RN R
C o\ ]
- N p
P \b~ TZ™M )
[ \ (REF. 18) ]
S N E
C \\ ]
C N y
[ N ]
- \ -
- N J
C N ]
: A :
Q€ 50~ \\.o —
v [ .
) o 4
(124 — -
[72] o -
u L . 4
g - € = In/in/hour N
? a0 — 0 — I1BOO°F =
[ O — 2000°F .
- 4 —2200°F .
C ¥V —2400°F 3
- 0 — 2600°F -
30 -]
r o FS—-85 ]
£ \ ( REF.19) E
; ]
20 |- N\ A
F 0 > .
b \A _-
[ v .
Y= \-— S —
dd il aa i bt il v li et e e ittt ety a2t el
44 45 48 a7 48 49 50 5 52 53 54 55
FS-85— Tal I6-log € ) (10)®
Figure 2, Parametric Creep Rate Plots of TZM and FS-85

ASD-TDR-62-763

12




TR R T TR

]

procye

1.0 T T T T 1 T "~ T 7 T
o -, o 1500 °F ]
(-]
o |DH A 1600 °F -
o v 1650 °F ]
-3 o 1700 °F
wio 8 0 1800 °F -
. L ( REF, 16)
07 |-
o|%
{3
8|z -
> T ]
ol 5 ' | A l 1 1 i ‘ l i l i l [} l
=8l 52 53 54 55 56 57 58 59 60
Tp {25+ log 1) (10)73
a. Yield Strength Deterioration vs. Exposure
60 T T | T T ) L) | { T T L T A M
I500 °F— Tq = 1960 ° R
50
A 1600 °F —Tr :2060°R
[ O 1700 °F—Tp:=2160 °R
" 40 =
x ( REF. 15 )
5 o
b 30 |-
I
(/2] 3
(7]
&
& 2 |-
(7]
10
0 i i
50

ASD-TDR-62~763

8 =Ty (23-10g é)x 10-3

b. Creep Rate vs. Stress

-

Figure 3. Parametric Plots for Rene! 41

13

4

L§ e

ST g R T

Lo

S

Lass




An estimate of the effect of thermal exposure upon the material
constants can be obtained by noting the effect of the exposure upon the yield stress,
1

1f o =Xx0
y y .
. v
and assuming E A EA

the following approximations result:

o = XO
o 0
t
and B = B/x
1
logB = logB-log x~ logfR

Primed constants refer to exposed material whose yield stress is x times the unex-
posed yield stresses. Values of x can be estimated from master '"Larson-Miller
Strength after Exposure' plots as exemplified by Figure 3a.

B. COLUMNS

The calculations required to determine the load and stability indices are indi-
cated in some detail for some column cross sections of up to 4 unknown dimensions.
The results for other column cross sections, plates, and tubes can be obtained in a
similar manner and are summarized in Table 1 for columns and in the appropriate
sub-sections for some piate constructions and tubes.

The design would be obtained by computing the load index, determining the

stress ratio from a P vs. 9/o_plot, and determining the detail geometry from both
§vs. O /a-o plots and the appropriate equations indicated below. ->|
P |

1.  ONE UNKNOWN DIMENSION -

Example - Solid circular column
using ;oad equation

Load Equation . J

P = AO‘ i (23.)

Let €c= (‘T,;)/(ET/EA) (Fig. 4) (2b)

where values of the stability index (§ c) as a function of the stress ratio (cr/a-o) are
plotted in Figure 4 for various values of log 8 .
I

But c=C E (__) (2¢c) .
¢ T Ab2
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Where Cc is the end fixity of the column. Substituting Eq. (2c) into Eq. (2b) results

in the stability index as a material-geometry parameter, giving

C E E
- L. __A .g. 2 = _A _C_i_ 2
$c =16 (o‘o) (b) Ca 7, (b) (2d)
2
where Cd = CC (I/Ad ) = Cc/16 (2e)
§c 0 )1/2
and d = (3)
b(cd Ex

is obtained from-Eq. (2d).

From Eqs. (2a) and (2d) we obtain
= -(1F) () -(5) &) ()
bzoo 4 b2 %, 4 ) Cd EA %

Rearranging terms so that the left-hand side of the equation is devoid of stability
index and stress ratio terms, results in the following expression for the load

index:
_ P C, E
() (4)(52)-<. ()
b o, o o

This load index was not plotted since it was not deemed to be of sufficient interest in
design and is only employed to illustrate the computing techniques to obtain load-
material-geometry parameters (P) and material-geometry parameters () that can
be expressed as functions of the stress ratio (o/ o).

d -
tyd

2.  TWO UNKNOWN DIMENSIONS \T\K®>A \.@
|

Examples - Circular or square tubes using b
stability and load equations.

Stability Equation \ ) ] J
Gp = UC'

Setting the local stability equal to the over-all

stability results in

(5a)

= d\n _ I
T=Cy ER( d) = C;, Ep o2 (5b)

ASD-TDR-62-763 16
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where Ct and n are constants determined by the geometry.

Letn=1

and ER= /EAET for a circular tube (Reference 6) (6a)

Let n = 2 for a plate-like element

R E S

E
and E_, = .428+.572J.25+.75—T- E (6b)
S

This is an average value for plates with various boundary conditions (See Table 31
and Fig. 176 of Reference 2).

Let A =a, dt ; (a1 = 7 for a circular tube) (7a)

and I =a, a3t i(ag=mw /8 for a circular tube) (7b)

Substituting Eqs. (7a) and (7b) into Eq. (5b) results in

Q
_ t\n 3d% d\2
o=C, Eg ()" =¢, Eq 3 =C4Ep () e
a, dtb
where Cy=C_-L, i 1 (8b)
A 91 °©
Rearranging Eq. (8a) results in
L=[fg Ep (g)z}l/n o
d C, Ep b

Load Equation (P= A0)
Employing the load equation with Eq. (7a) results in

P=aldta'

Putting the equation in nondimensional form and substituting Eqs. (9) and (3) results in

1/n
P _a 4t o _a 5c¢%|% Er & 9% ra
b2a0 1,2 d o 1 C,E,T, E, C, E, =

ASD-TDR~62-763 17




Placing only stress ratio functions on the right hand side of the equation results in the
load index

ECa

1+
- p CiEn n (Eqp o
P= 2 o.a o =(€c) E, o ()
b A o1 o R

The following design equations resuit for columns with rectangular plate elements
(n=2).

3/2 3/2
i')=i (EA)___ & C = P EA 03 Cc “/q
b2 (0'0 ) 5/2 ay t b2 o, 512 O,12
32 (Et\12 (o 1/2
- ()" (%) = €% (%)

This equation is plotted in Figure 6 for various values of logf3.

§ o 1/2 € o a,\1/2
d=b (A) =D ( c 9o ._1_> llb
Ca Ea C.Ea %3 —
§ o \1/2
t=d(EET°) (11c)
t A
E, /¢\2
where§ = (/o) / (Ep/Ey =C, —2 (E) (Fig. 5) . (11d)

o

For a circular tube (n=1),

2 2
p-2 Fa %% _p EFa % CC=2( ) (<)
b2 0,2 a, b2 0_03 012 c 't e A o,
. (B, ¢ 3/2
= ec _E_A-) (T;) =<, (a’/a'o) (Fig. 7) (12a)
§ o 1/2 § o a. \1/2
d=b ch = p cc EO a_l (11b)
d A c A "3
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1/2
o d(" % 3 )
t=d

= c
(CtEa) VET/Ep t Fa

(12b)

3. THREE UNKNOWN DIMENSIONS
Examples - Sheet metal channels, angles, etc.,

using maximum over-all stability and stability
and load equations.

Maximum Over-all Stability (ch Ixx =C 1)

cy yy
(Equal stability about both bending axes)

Evaluating the inertias of the channel about both axes results
in the following:

2
-1 3 wtd™ _ .3 1 w _
I, =13 t+ ¥ =a% (3 + 25) (13a)
3 2 2
= o Wt w (2 (wt) (w/2))
Ly = 2713 r2em (3) - R
-2 3 _w+t _ 3 (2 _ 1
=% Wi- = w? (3 2+'d7w) (13b)
For equal stability,
ch L= Ccy Iyy (13c)
where ch and Ccy are the end fixities for buckling of a column about the x and y
axes, respectively.
Substituting Eqs. (13a) and (13b) in Eq. (1.3c) results in
3 1 w\_ 3 2 1
Cox &t ({5 +25) Coy Wt (%- v )
Let “y = y=z (t/h) (13d)
hed e (adriala)
12772 7Y \3y+ )\ C,y (13¢)

C
If -C—CL=1, solving Eq. (13e) results iny = 1,366
cx
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e

smceA=dt+2wt=m(1+2—‘g—)=dt(1+2y) (14)

we obtain the coefficients which reduce this design to one with two characteristic
dimensions similar to that described in the previous section. From Egs. (14).and
(13a) we obtain -8

= (1 + 2y) = 3.732

2ga=(53 +§) = 768

The detail design would be determined by employing Eqgs. (11a), (11b),
(11c), and (13a) provided that the web is most critical. The criteria for determining
when the web is most critical is obtained as follows:

2
Ch ER(%)Z > ¢, Ep (3)

h 1/2
T 2 (C/cy) (%)
Substituting z = % results in

2

(+) V7S, 22 (15)

t

The value of Ch can be increased, if desired, by adding a bead or reinforcement to

the flange. This criteria is not satisfied in sheet metal construction with free flanges
which can buckle about both axes. 1t is satisfied for all sections when buckling can
occur about the X-axis only (see Subsection B, 4). For the case illustrated, the
flange is more critical than the web since, from Eq. (15),

2 1/2
('?_) (Cw/c,) v =1(3—:%%8') = -329<(t5/'h) = 1"366 =1.366

From Eqs. (14) and (13a) we obtain

A=wt(i +2)=wt (% +2) = 2732wt = @ wt

w 1w
— 3, (2 1 = 3, = 3
I wt(3-——-—2+1/y) .301 w't a3wwt

This results in similar expressions for the design using w as the characteristic
dimension, i.e.,

£ 32 g
P = blg ) ( C,A 53 ) (03_2) (Cc) (Ch) 12 (16a)
(o] 1
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smanmoy,

1/2

§ o a
w= b |mt—2-L (16b)
<Cc Ea °3>
€ 1/2
[+
t = W<CL——h £A> (16c)
d = w/y (16d)

1w’ and a 3d °F 3y for various cross sections with

Ccy/ch equaltol (l.e., I = Iyy) and 4 (l.e., I = 4Iyy) are presented in Table

1. Note that the design procedure is identical to that described in Sub-section 2
except that the geometry constants (a G gy and Ch) are employed to solve for w

rather thand.

Values of z, a,q Ore

1w’

4, FOUR OR MORE UNKNOWN DIMENSIONS

Example - Extruded or machined channels, etc. , “ Wy ‘ '|
]

using symmetry, maximum over-all stability,
hl

and the stability and load equations.

Symmetry (Equal stability and max. I)
=[BT A0 - je— t

W SW, =W 1

d

i 2 I ‘— h2
Maximum Over-all Stability

]
(Maximum inertia [ Ixx] about only bending axis) | w ?
2 . |

X

A=dt+2wh=dt(1+2z) " 7a)
2
=1 43 4\ _ 43, (L
1=+ dtr2wh () =a*t (55 +2/2) (17b)
wh
where z =3t {17¢c)

To determine the mass distribution which will maximize I for a stationary A and t/d
ratio, we first determine the relationship which makes the A and t/d ratio stationary
for an incremental change in z.

(i.e., g‘: =—s£-/-91= o)
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Since

84 8 [t/a @) a2 | 182)
3z < Sz -

it follows that

2

SA _ 3t/d 2 3d° [t t 2 =
25 = _S(Tl [d (1+2z)] S (d)(1+22)+(-E) @)@ = o
but for maximum stability of element
8(t/d) _ 0
Sz
2
3d 2 _
—-ST (1 + 2Z) + 2d = 0
8d® _ 82
dz 1+ 22z
2
logd™ =-1log (1 + 2z) + ¢
2
logd® (1+2z)=c¢
d2 1+ 2z)= e®= constant for stationary area (18b)

For maximum over-all stability, the incremental change in I for a change in z should
be zero.

8'(e2°) (t/d) (1/12 + z/2)]
31 _ Skd‘l) (t/d) (1/12 + z/2)] L 1+ 2z)2 J =0 (18¢)

8z Sz 32

This results in

1+ 2z)2 (1/2) - 1/12 + z/2) (2) (1 + 22) (2) =0
1+ 22&)4

and 1/6= z (18d)

Substituting in Eqs. (17a) and (17b)

a, =1+ 2z =1.333 (Table 1) (18e€)
1 -
ag=15"% z/2=.,167 (Table 1) (181)
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Utilizing the equal stability of elements (provided the h/t ratio is not specified)
results in

Lo way cyept? (192)
but from Eq. (17¢) h = Zl‘%- (19b)
ztd 1/2
28 - @) c/cy)
w
and wi=d (z)1/2 (ch/ct)l/ . (20a)
Similiarly,
h=t (2 (ct/ch)l/ . (20b)

Values of z, a and h/t are presented in Table 1 for typical machined or sheet

1 %3
metal sections,

The above analysis is for a column which can only buckle about one axis, and
can be applied to sheet metal constructions as well as machined sections. The value
of z which optimizes the cross section does not change. Thus values of a 1 and a,

can be determined even when the thickness ratio is specified as in sheet metal con-
structions. All the sections summarized in Table 1 for sheet metal construction which
can bend about the x axis, only, satisfy the criteria of Eq. (15). Thus the web is the
critical element and Eqs. (11a), (11b), (11¢), and (13d) define the detail design. The
case of a machined section with unspecified h/t ratio need not be investigated as to the
characteristic dimensions since the criteria of Eq. (15) is automatically satisfied by
Eqgs. (20a) and (20b) which results in the web and flanges being equally stable,

C.  PLATES

The basic difference between the column and plate is the restraint in the trans-
verse direction due to the Poisson's ratio (v) and the edge fixities of the unloaded sides.
If the unloaded ends are free, then the plate acts as a column with the bending stiffness

increase by a factor of the order of 1/(1-¥ 2). If the unloaded ends are restrained and

the aspect ratio is significant (a/b> 1) then the width of the plate, rather than the
length, becomes the characteristic buckling dimension (b) which determines the sta-
bility. It cannot, in this case, be treated as parallel columns.

Many types of plates can be fabricated. This report will consider a limited
number of such types of construction. The unreinforced plate, the corrugated plate,
the integrally stiffened plate, and the sandwich plate constructions will be examined.

The sandwich plate differs from the others in structural design in that the
stability stress can be assigned and the plate designed so as to attain this stability
stress. The other constructions require the determination of the "optimum" stress
level which will provide the minimum area to resist the applied load. A lower sta-
bility stress would require more area to withstand the load and would weigh more
than the minimum weight. A higher stability stress cannot be obtained without in-
creasing the area or taking it away from one element to increase the stability of
another which will decrease the controlling stability stress,
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The sandwich construction has the design characteristic described above be-
cause it employs a core which does not resist the applied compression load. The

sandwich construction is very efficient for low load intensities (P/ b2 a-o),where the

built-up constructions have low ""optimum'" stress levels, butit becomes less efficient
than built-up constructions as the "optimum'" stress increases to the order of the
stress in the sandwich construction. Corrugations, and then reinforced panels,
approach higher optimum stresses at lower load intensities than the unreinforced
plate. The shear deformation due to axial load is relatively small for non-sandwich
type constructions and its effect upon the stability is ignored except for the sandwich
construction, It should be noted that non-structural details necessary for these
various types of constructions may overshadow the difference in the minimum weight

designs, b
t /A—— 7/

1. UNREINFORCED PLATE

The unreinforced plate contains
only one unknown dimension, the thick-

ness '"t". Employing the load equation, a
we obtain,
P=Ac T —0Q
=tbeo (21a)
2 P
Dividing Eq. (21a) by b Ty to make the equation nondimensional, results in
t
2P'=(‘b—> <L> (21b)
b % %
2 2 2
; t T a nb .
Since 0 = Ct ER (T) , Where Ct = ?(1?2 (_1-1? + a_) for simple supported

ends (see Table 36 of Reference 2 and Figures 14 to 20 of Reference 4 for values of
1.08C))
t ’

) E 2
we obtain Ep - (cr/cro)/(ER/EA) =c, U_A (%) (11d)

o

/E o
and %=ﬁ (11c)
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Substituting in Eq. (21b) results in

§ o \1/2
Poo (el (=
bzc-o ( t EA ) <°'O )
1/2
C, E,: 1/2
P = P t A = < i
P bzco ( - ) (fp) ( o )(Flg. 8)

and from Eq. (l1c)

1/2
AtD (Ep"_o)/
CiEa

A plate in shear can be handled in a similar manner, i.e.,

(22a)

(22b)

2 2

where Ce.. —Lz— (5. 34+ i4—b-2-)for simple supported sides (See Eqs. 735 and 736

12 (1-v7)
of Ref 2). Assuming an invariant octahedral stress-strain law results in the trans-
formation :

= o/f3 [Eq. 739 of Reference 2 and]

2(1+v)e Section 3 of Reference 7
and —_———————

V3

This is employed to obtain the shear stress-strain curve from the uniaxial stress-

strain curve and results in
E 2
€= o/ 0 Ep/E ) = /T 0 (/B =T o 2)()

%
£ o 1/2
t=pb| P ©

Lﬂcf Ea
J/3C, E 1/2 -
P = Q T A = L = i i
and P = bzo- ( o, ) = Jg N ﬁp<% ) (Fig. 8)
o
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Thus the same design graph can be employed. It should be noted that the use of the

design graph would result in solutions for X rather than v /o and that the aver-
% o
age ER used for plates in compression was employed.

2. CORRUGATED PLATE

Plate construction consisting of
corrugations must be considered as orthotropic
plate in that the cross-sectional properties vary
in different directions. The bending stiffnesses
of the corrugated plate about axes parallel (Dyy)

and perpendicular (Dxx) to the longitudinal axis

of the corrugations are not difficult to determine.
The torsional stiffness is more difficult to
evaluate. It is assumed that the torsional stiff-
ness (GIx is associated with the weaker of the
two bending stiffnesses, [i.e. . ny
imated by Dyy (see Eq. 203 of Ref. 1)] . This is a goud approximation for corrugated

=1/2 (Vnyy +vy D )+2G Ixy can be approx-

plate with two faces (almost isotropic) since the torsional stiffness of a multicellular
box is approximately equal to the enveloping box. In the case of one or no faces, the
torsional stiffness can be viewed as two springs in series (since the torsional moment
must be taken in both directions). Since the stiffness of the weaker spring is a good
estimate of the stiffness of the two springs in series, we again conclude that ny~D v

The corrugated sandwich shown in the sketch above has as many asfive
unknown dimensions. The variables § and nd are not always at the discretion of the
designer but may be particularized because of fabrication requirements. Discrete
corrugation angles § and minimum flats (nd) for joining may be specified to the de-
signer who must consider these details when he seeks to obtain a minimum weight
design. The type of design equations employed for the column still apply, however,
and are utilized.

From specified values of n and & and employing equal stability of the
elements, it is possible to express the area and inertia about both axes in terms of
two characteristic dimensions, '"d" and "t"". Employing the load and stability equa-
tions described in Paragraphs a. and b. of Subsection II-A-1, it is then possible to
develop design graphs. The double-faced corrugation panel must be considered
separate from the single-faced and no-faced corrugations because of a difference in
form of the over-all stability equations, The values of the geometric constants which
express the area and inertia will be presented in terms of n andg . Methods of ob-
taining the best values of n and @ will be discussed in the Appendix.
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o _%_R(JDXXDYY +DXY)~KWR(‘ Ixxlyy +IYY)
P - 2 -

a. Double-Faced Corrugations in Compression

The local stability of the face and corrugation web elements is em-
ployed to obtain a relationship between the face and corrugation web thicknesses.
It is assumed that the flat is sufficiently small so as to be more stable than the web.

Values of + Ct/Cf of 1 (equal end fixities) and of 1.14 (obtained from Figure 5a of

Reference 20 in which moment distribution was employed) are recommended.

2 2
. _ f _ t _
Since o = Cp Ep (2 nd + d tane))' Ci ER (71731?9%— % (252)
f _ .
then + =2 (nsin 6 +cosf)./ Ct/cf (25b)
The geometry can then be expressed as
Ax/in.a a,t (264a)
I /in=a  td?2 (26b)
xx' 4
. 2
Iyy/ in=a . td (26c)
where a_ =48I0 §+1 + 4 (C /C )1/2 (n sin 6 + cos 6) (26d)
12¢  nsin g + cosg t'f
a =(n/4) sing +1/12 (C /C )1/2 (nsin@ +cos@f ) (26e)
42c nsin g+ cosg tf
and 0520=«/ Ct/cf (nsin@ + cosg) (26f)

where @ oe = Geometry factor for double faced corrugations in compression,

ne

Employing over-all stability equations such as found in Reference 8 and
in Eq. 233 of Reference 1, and equating this stability to the local stability of the cor-
rugated web, we obtain, noting that A, D, and I are per inch of width,

(27a)

bA b2A
2

wherek= K(1-v )~ 27 2 for simple supported plate of infinite aspect ratio (See Ref-

erence 8 for other boundary conditions). Substituting Egs. (26) into Eq. (27a) and
equating this to the local stability results in

ke (V% % 4 %) 9 2
(o2 = R (_d.) = C E (__l___ =0
P a] b t BER \@/sing) =%t 27b)
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Solving for d/b, we obtain

1/2
%o )

k(AT + %)/

()

From the load equation (P = o A b), we obtain

—g— = (sing)(

bc:r0 o

Substituting Eq. (27c) in Eq. (28a) we obtain

£ o -a sin{,‘/ S % ) (_t.)z( g )
b2°(_) 1 \K(@, e , a5 d oy

9 o
but t/d°= P9

Ct EAsm g

and manipulating Eq. (28b) results in

[ 1/2
= ( P\ Easing cK(/a, a +a) _e (<= .
P =l a3 =\ ) e 9
b’ a % 17 L o
o
The detail geometry is as follows:
. 1/2
== al €p c,-o
d=b . o
Ja a a
K( 4 95t 5) A
1/2
§ o
t:—_i- i L
sing Ct EA

f=2t(nsing +cosg)v Ct/cf

o)) ) ()6 @

(27¢)

(28a)

(28b)

(28¢)

(28d)

(292)

(29b)

(29¢)

The manipulation of Eq. (28a) could as easily have resulted in an expression of the
load in terms of the '"d/b" ratio rather than the "./d" ratio. The technique employed
was to obtain results similar to those with less than two faces where the plate stress

can not be expressed dircctly as a function of "d/b" ratio; see Eq. (33b).
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b. No Faces or Single-Face Corrugations In Compression

For these types of construction, the following cross-sectional prop-
erties apply:

I = a,td? (30D)
XX 4

_ 3
- a_t (30c)
I > 1 (30d)
XX yy

Equation (25b) applies to the "f/t" ratio for single-face corrugations
and is not needed for the case of no faces since f = 0 is no longer an unknown dimen-
sion.

For one face, we obtain

__nsinf +1
11c- nsing + cos 8

+2 v Ct/cf (n sin § + cos@) (31a)

@ = (0/4)sin@ +1/12 (1/2) J/C/C;(nsin 6 +1)

41c nsing + cos g ai; Soale)
1 3
and 051C=E [1 + 2~/Ct/Cf (n sin 8 +cos9)] (31c)
For no faces, we obtain
nsin@ +1
10c= nsing + cosg (322)
_ (n/4) sin 8 +1/12
a400" nsing * cos g (32b)
1
- a = e .
“and 500 12 (32¢)

where Ale ™ Geometry factor for single faced corrugation in compression,

The larger inertia about the x axis is employed to simplify the over-
all stability equation

KE (~/1 I +1 ) KE, VI 1
= R XX Yy Yy ~ R XX yy
P b%a b2a

(33a)
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SSpunnl N | (33b)
p % b2

Employing equal stability to evaluate d/b in terms of t/d results in

.2
i=(Ctalsm 9)1/2/t)1/2
b Kva, a, \d

(34)

From the load equation (P = o A b), we obtain

S__P (K,/a4a5sinp>1/z (CtEA)3/4=€3/4
P
o

23 o (o/ o) (Fig. 10) (35)
(o} 1

and the following formulae for the detail geometry:

C, @, sin@\1/2/& o \1/4
d=b (———) <_CRE—°> (36a)
1/2
t = (d/sing) (%P—Eaﬁ) (36b)
t“A
f=2t(nsin 8+ cosf )V Ct/cf (36¢)

c. Corrugation Panels in Shear

Corrugation panels in shear require a somewhat more complicated
approach., The stability of a corrugation panel in shear is not as well defined as in

compression. Equation 235 of Reference 1 is employed to define the stability in shear,

In addition, the area of the corrugated web is not as efficient as the faces in carrying
the shear load. The shear strain (and therefore stress) in the corrugations must be
smaller than that in the faces. This is because the deformations from node to

node, which join the faces to the core, must be equal to ensure compatibility of the
assembly but the load path from node to node is longer via the corrugation web than
via the face. For this reason the corrugation web can be made to buckle at a lower
stress than the faces. The relationship between the faces and core is obtained by

making the faces and webs buckle simultaneously when the stresses are properly dis-
tributed.

To obtain the f/t ratio,use is made of the compatibility equation

yf(nd+d/tan8)=yt(nd+d/sin9) (37a)
T
oo f _ nsin8 +1
resulting in r—t S SO B87b)
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The simultaneous instability criteria yields

f 2
Ty CiEr [2 (nd + d/tan 9)] _ S [ 1 (f/t-J T
r, C,E t 2 - C 2(n sin 8 + cos @)
t t R —_— t
( d/sin 3)
This result is approximate because of the assumption that the

effective moduli for the face and web are equal. Combining Eqs. (37b) and (38)
results in

—f =2V (C/Cp (nsin § +1) (nsin B +cosf) =a, (39)

where Ct and Cf refer to the stability constant for web and face panels in shear, The

thickness ratio is then employed to obtain the area and inertia of the plate in terms of
t and d. The over-all stability equation defined by Eq. 235 of Reference 1 is then
employed giving

3 1/4
4 k(D D ) 4k E 1/4
vy XX _ R (I I 3)

b? @-pHp? VWYX

2 = (40a)
1/2

D
XX

D I 1/2
where k~ 8 + 5(—¥L> =8+5 (_IXY_> for simple supports and infinite
XX

aspect ratio (Fig. 203 of Reference 1).

1). No Faces or Single Face Corrugation in Shear

Let A, =a_t
X

1
- 2
Ixx =a td
= 3
I = t
yy 9%
and K = kS 32 for simple supports since I__ >>1 and1-V v ~1
l-vxvy XX yy xy
From Eq. (40a), we have
1/4 3/2
KEp gql/4 K (°5 al ) (ERt) (d) 3/2
= [y W) - (#12
b yy XX b2
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Q £\/
but —b = Tff+ Ttt =Tt t[(f_t)(_t—)+ 1] =t T‘, (aa) (41b)
R AVA nsin 8 + 1
Where dg = [(;)(T) * 1] - (Fsrgremme o7 *1) (t1e)

is obtained from Eqs. (37b) and (39).

Cc;r;tjining Egs. (41a) and (41b) results in

{172 43/2 (as °43) Ve
= g = KEg — 3 (42)
8 b 8

Equating this to the stability of the web [Tt = Ct ER (37%1-1_1_8)2-] results in

5 /2
b 3\ 1/4| \'d o\ 'd
K (a5 a4 )
Using the load equation, we obtain,
Q i a /3 _t_) 7/4
" ple -GST:T)'%"—B'(U‘O)GS’(C’
o J3
a 7/8
2 -t ('f) 09( $s % ) (44a)
b VIO sin’g E , CY3
7/8 |
s o _9Q V3 (sinzeEA_Ct“/s—) - B e\ 8 (44
(Fig. 11)
EAe
where 3 g = (9/9)/ (Eg/E,) = —&:- (Fig. 12) 45)

The effective modulus was approximated with the secant modulus in
accordance with Reference 9. The average value ,ER=ES(. 428 + .572 4,25+, 75 ET/ES)

was employed for unreinforced plates to avoid the need of another design curve. This

is justified by the fact that the correct form of ER is in doubt and the differences in
the design curves are slight.
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Values of the constants are as follows:

- D sinf +1
@10s nsing + cos@

(n/4) sinf +1/12

%40s = nsing +cosf
asos = 1/12
080 =1
. [aSO C, sin0 ]1/2

90 IK(“s 043) 1/4J

where a x0s ~ geometry factor for corrugation with no faces in shear.

C
@, = Zth— (n sin 8 + 1) (n sin 6 + cos 6)

f
_nsinf8 +1
2118~ T sin@ + cos8 ta,
(n/4) sin@ +1/12 @799
a = 2 + —
41s n sin@ + cos 4 a
11
1 3
ags=18 A+ %)

n sin8 +1
a81"(nsin9 + cos @ )a7 + 1

. 2 1/2
ag; C, sin (¢]

291 = K (05 043) 1/4

The detail geometry is obtained from:

§ o 7/8
S (o]
t=b Gg\sinBE, Cx/3

1/2
d=t (EA Ct ‘/;i_sinzg)

%o Es
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(39)

(41c)

(46a)

(46b)
(46c)

(464d)

(46¢)

@472)

(47b)

47¢c)

47d)

(48a)

(48b)




f=ta, (f=0/forno faces) (48c)

W/p=ta (48d)

1

2). Double-Face Corrugations in Shear

The results for double-face corrugations in shear are obtained in a
similar manner to that for corrugation with one face in shear with the exceptions

that the Iyy inertia is defined in terms of td2 rather than t3 and the stability constant
is modified by the ratio of the inertias.

Let Ax=a12t
2
Ixx = 042 td
2
vy -a52 td

,I
K~ 4 (8 +5 Txx )/(1 -v 2) for simple supports
XX

Expressions similar to Eqs. (42), (43), (44b), (47) and (48) can then be obtained with
the above definitions of the geometry.

%52 1/4
. . 4 (8+ 5\/; ) (50 24°) ER(—d-)2= c, Eg(+Sine S"“9) (49)

t= 1.2 = b
.2

d _ C sin 9“82

Ll b s Tt W)
1y 2 ( 52/“42) 52 42

_ 2 C,E,

p= ZQ a 2 SI:: : = p (Fig. 9) (51a)

b, 82 92 %o cro
92 €, o,
t= (—P— ) (51b)

sin 9 V3 Ct EA

ds=

agb, € o \1/2
2 (_p o °) (1c)

sing 3 Ct EA
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f=at (51d)

e “12 t (51e)
where
_ nsin@ +1 . o
0128- n sine + coséd 7
a
_(nsinB/4) + 1/12 7
42s  n sin§ + cosB8 5 (51g)
0525 =a 7/2 (51h)
39
a, = 2 [ (C/C) (sind +1) (nsinf +cosB)] 1/2  (39)
@..=@a,nsind+l__ ., -
82 = 7 hsin@ +cos§
1/2

.2
082 Ctsm 8

( 2 ) = (“ 528 ¢ 42s)
1-v @425

- —
The stability index fp is employed rather than ES in order to utilize Figure 9

which was obtained for a double-faced corrugation in compression. The present state
of the art does not warrant refining the design procedure any further. The technique
is versatile enough, however, to develop new design curves whenever experimental
and analytical investigations present more reliable stability equations.

The Appendix presents a technique for determining the corrugation angle 8 for
given values of n which would result in minimum weight of the plate. The results of
this analysis are presented in Figures A-1a to A-2b together with the resulting values of
the geometry coefficientsa. These can be employed wherever the fabrication require-
ments do not dictate the values of 8 and n. A possible design technique is to assume a
value of n in order to determine the appropriate geometric constants and to design a
minimum weight structure. The detail design is then reviewed to obtain a better
estimate of n consistent with the requirements of a minimum flat for joining and a
minimum bending radius for the corrugation thickness. This process can be repeated
until the assumed value of n is in satisfactory agreement with the value of n required for
fabrication,

3. REINFORCED PLATE

A plate is reinforced for the purpose of working to a higher stability
stress level by-modifying the buckling pattern of the plate. Reinforcing a plate by
transverse stiffeners will not be too effective unless the stiffeners are spaced closer
than the width of the plate so as to force buckle waves shorter than those for the un-
reinforced plate, A more efficient construction is usually obtained by introducing
longitudinal stiffeners. These stiffeners not only carry a portion of the compression

ASD-TDR-62-763 43




load but they attempt to subdivide the plate into smaller panels with smaller buckle
waves, The longitudinal stiffeners can be viewed as intermediate "'elastic' supports
for the plate. If the bending stiffness of the stiffener is sufficiently large relative
to the plate, then it can act as a node provided it is also stable as a column. Ortho-
tropic plate theory, similar to that employed for corrugated plate, will be utilized
in the design of reinforced plate.

C

A typical integrally stiffened plate
is shown in the accompanying sketch, The simi-
larity of repeated portions of the reinforced plate
with column sections is apparent. It can be shown
that in order to obtain maximum stability, the
geometric distribution of area in the cross section
will be similar to a column for maximum inertia
about one axis,

The requirement of equal stability
of the elements of the cross section permits ex-
pressing the area and inertia in terms of two
characteristic dimensions, From Eq. (20) we
have ‘

w=d (2?2 (ch/ct)l/4 (20a)

and h= t(z)2 (ct/ch)l/ 4 (20b)
The area and inertia are then evaluated utilizing the relationships for columns

3
(Ac= e dt and Ic = '-'13 a-t).

Area/in.= Ap/b = [n (Ac) + wh] /b = (na, +z) dt/b = a, dt/b (52a)
2 Dxx 3 3 )
(1l-v )Q-Ixx~nlc/b=na3dt/b=a4d t/b (52b)
2 D 3 / 3/2 .3 3
(1-u)—E¥l=1 =h%/12 = V' C,/C, )% © (t°/12) ma_t (52c)
R vy t" “h 5
where @y = na,; +z (524)
a, = na, (52¢)
a. = @v/C7C)¥ %12 |
5 = t' “n (52f)
and n = number of stiffeners,
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Employing Eq. (33a) for an orthotropic plate with Ixx>> I , we obtain the
stability stress of the plate: yy

KERJlxxxyy KERJa4a5 ¢ v\
P b’ A 7

Equating the local stability of the element to this stress results in

a_ C 2/3
(%)= (__7 : 1«1) (54)
K,/r:z‘lcn5

The load equation results in

4/3 CE, /6
 JRg_ ( Ky °4°5) ( t A) =(€p7/6)(—a%)(Fig. 132)  (55)
o,
b 9, a, Ct 07 (o}
with the detail geometry determined as follows:
Ct a7 2/3 £ o 1/3
d =b(————) (C—‘;:% (562)
!(.,/0405 t A
¢ o 1/2
t =d< = ) (56b)
t A
h=t zJCt7Ch (56c¢)
\
o = 9 dt { 56d)

The load index is not unique sincé the (d/b) ratio can be solved for in terms of
the (t/b) ratio as well as the (t/d) ratio. This would result in

3/2 K2 a, a 2
=t P E 4 5 3/2

— 3 1
a’(n+
b o, \o, 7(“ 1) (12) Ch

(Fig. 13b)  (56€)
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The design of the structure requires a knowledge of the distribution of area
(z = wh/dt) between the plate and the stiffening elements, The distribution should
be arranged so that the product DXX Dyy is a maximum when the area and stability

thickness ratio are stationary. This would result in a maximum stability stress,
Considering a typical reinforced portion of the plate, we can resolve the product of
the bending stiffness to

E & 2
R 3/2 b 3
D D ~ | (c,/c,) <—> a, dt (57a)
12(l_yz)z t h n+1 3

For a given number of stiffeners the value of the terms multiplying a 3d3t is
stationary and we arrive at the conclusion that the area distribution which maximizes
the inertia of the column section (a 3d3t) will also maximize the over-all stability

stress of the reinforced plate. These values of z = wh/dt correspond to values pre-
sented in Table 1, when the moment of inertia (Ixx) of the column section is maxi-

mized, for angles (see shaded area of sketch above) or for channels (if stiffener has
area above the web) . This is because the area of the skin assumed acting with the
stiffener is "wh" and not "2 wh"', Any stiffener area (wh) above the web should be
distributed so that the areais stabletoa stress equalto or greater than the stability

stress of the web. Note that the Ch for the base is for a supported plate while the

Ch and C t of the upper flange and web may be for a flange or a supported plate.

If the plate is stiffened by stringers then the optimum distribution of area will
depend upon the cross-sectional properties of the stiffener. Assuming a stringer
whose cross-sectional properties are defined as

Area = AS =Qsl dt (57b) —u T

3 — e ¢

Inertia = Is = Q. dt (57¢c) - - d

Centroidal distance = ¢ = L d (57d)
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and where all the elements of the stringer are at least as stable as the web (dt) .
Then employing the technique of maximizing the inertia of the sheet-stringer com-
bination for a stationary area, results in

a (a_ d 2(1)
, = Wh_ sl s1 %s6 " “%s3

s At L,/ 2 +a (57e)
( sl "s6 s3)
which can be employed to calculate values of
a = nfa :
7 ( Sl+zs)+zS (571)
a 02
8l "s6
a, = a, + 57
4 “( 83 asl+z) (57g)
and
3/2
a =z (C:/C)l/2 (57h)
5 s t h

to be substituted in Eqs. (55) and (56€) .

The above design procedure assumes that reinforced plate buckles as an
orthotropic plate. The dimensions of the plate, however, may be such as to enforce

another type of deflection pattern. If the plate is very short so that it will not buckle
except as individual smaller plates, then

S s A R ()& (2) (583)
b2cr bza b2cr A% b OE)
(o] (o] o
b
but vy w=d z ,/Ch7Ct (20a)

which results in

1

d
—_ = (58b)
L (n+1), / z\/Ch7Ct

2 1/2
o (W0 /AR (e

. 5" Yoo o
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If the plate is sufficiently wide so that the side supports do not significantly restrain
the center of the panel, then the design procedures developed for columns would be
applicable for a plate with a few stiffeners.

It is recommended that the stability stress level be evaluated for all the modes
of failure described, whenever the designer has any doubts, and to base the design -
upon the lowest stability stress obtained.

4, SANDWICH PLATES
A typical honeycomh sandwich plate is shown Core
in the accompanying sketch. Each component of the sand- s\’/
wich must be capable of doing its assigned task. Failure of /'\

any component can precipitate instability of the assembly at
a stress lower than the design stress. The facing material
provides the load carrying medium of the structure and must 1
be stiff and continuous. The core material must have enough

stiffness to stabilize the individual faces against buckling; E X
restrain the faces from deforming independently of each i
other (the large bending stiffness to weight ratio is depen- | . |

dent upon the faces and core acting together) ; and to carry r
lateral loads and shears (lateral deflections of the plate

cause a lateral component of the axial load) . The core is

connected to the faces by means of a bonding agent which ;
must be capable of transmitting the loads between the faces

and the core. For minimim weight design the core and bond should be as light as pos-
sible ( consistent with their ability to do their assigned tasks), and the faces should
have the highest stress to density ratio in the expected environment,

The design curves presented in this study are based upon an analysis
presented in Reference 21 for square cell core and they should be sufficiently accurate
for hexcel core. The problem of face wrinkling, for which no acceptable design proce-
dures exist, was empirically resolved by making the thickness of the core cell greater
than 10 percent of the face thickness (t>.1f). This criteria can be readily modified
without affecting the design curves. The definition of effective stability modulus (ER)

was avoided since disagreement exists as io the proper modulus. The design proce-
dure permits the designer to select any definition he believes to be appropriate.

The analysis of the stability of the honeycomb sandwich is similar to the
analysis of unreinforced plate with the exception that the effect of shearing energy upon
the stability cannot be ignored. The general equation employed ( as, for example, in
References 7, 8, and 21) is as follows:
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i b e

1

2
K Ep (I/Ab)

9crm
Ter =T P__— 2 (59)
crm K (I/Ab)A E
1+ R
P rs 1+ A G
¢ s R
where subscript crm refers to stability due to bending and no shear
subscript crs refers to stability due to shear and no bending
and AS = shear area of sandwich ~ (pc/pf)/Z ~ t/s. (The other symbols are

defined elsewhere.) Manipulation of this equation under the assumptions that the faces
are small with respect to the depth of the sandwich (f<<d) and that the effective shear
modulus is proportional to the effective stability modulus

[ER/GR =2 (1 +v)]

results in the following

K—%—: (1+,,)( 5 )(-f—)(xz) + \/[(1-»;/) (—g) (-f—)(l(i)] 2.4Ke  (60a)

b o bo
(Eq. 13.2 of Reference 21)
where & = tr/ER (60b)
2
and K== l,f (60c)
1-°

where k is the standard stability constant for plates presented in various texts, Ref-

2
erences 1 to 8, (e.g., K = Ll g = 43,5 for a simply supported plate of infinite aspect
1-y

ratio) .

Plots of this equation are presented in Figures 14a to 14d for given

2
values of t/s. Entering with the known abscissa (P/b'o) and proceeding to the
proper curve € = O /ER, results in the ordinate (K d/b) which can be employed

to solve for the minimum depth which will stabilize the faces to the selected stress.
The proper value of t/s is obtained by selecting an available s and t where t 2.1 f

/3

2
(this ratio can be modified) and s < 2f/(3 €) . These requirements can be
satisfied with the aid of Figure 15 which also indicates the available cores.
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Figure 14a. Design Curves for Honeycomb Sandwich ( t/s = 0. 004)
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Figurc 14b. Design Curves for Honeycomb Sandwich ( t/s = 0. 006)
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Figure 14c. Design Curves for Honeycomb Sandwich ( t/s = 0.008)
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Figure 14d. Design Curves for Honeycomb Sandwich ( t/s = 0. 012)
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The design procedure can be described as follows:

(1) Select a design stress o and a material (E,, o, B)

(2) Enter Figures 12 and 4 with o/ o in order to determine
£ S and € o °

(3) Calculate ES and ET:

Eg = E, [(cr/ao) / ES] (61a)
E, = E A[W co)/ec] (61b)

(4) With the appropriate effective modulus formula, determine E_, where

R
Egp = Eg (Eg Eqp)

( 5) Calculate € and e

where € = o-/ER (60b)
and ¢ = cr/ES ‘ (61c)

(6) Enter Figure 15 with € and determine an available t/s which stabilizes
P .
> = o
the faces. Wheret 2 (.1)f (.1) b o {62a)

and s < 2f/(3¢)2/3 (62b)

(7) Enter Figure 14 for the appropriate value of t/s with

P/bzo- and € and determine K % .

( 8) Calculate the depth of core required
d, = (K d/b) (b/K) - £ (63)

An analysis of the weight of the sandwich indicates that the weight of the bond
is fairly independent of the design, the weight of the faces is dependent upon the face
density (p f) and stability stress (o), and the weight of the core increases with core

density ( pc) . This would suggest that the honeycomb sandwich be constructed with

faces of the highest stress to density ratio and the lightest core that satisfies the core
requirements.
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Figures 14a to 14d indicate that the depth of core increases with the 2f/b ratio.
A minimum weight design would result if the face thickness is made as small as pos-
sible consistent with other requirements, such as required torsional stiffness, etc.,
and if the remaining required axial load carrying area were distributed at the supports
so as to preclude instability.

For plate-like structures the minimum weight occurs for equal faces. For box-
like structures in bending, however, a more efficient design can occur with thicker
outer faces.

In some cases, selecting the allowable compressive stress does not result in a

minimum weight design. This cdfi Sécur if the load intensity (P/b2 o-o) is too small

or the available core which satisfies the core specifications is too heavy. An analysis,
such as performed in Reference 21, indicates that the design stress which results in
minimum weight satisfies the following:

i P
8¢ _ _P g (Eq. 20 of Ref. 21) (64a)

80 vt p /KT

Plotting
E 2 5/2 /E \1/2 [E S(E,./E_)
p ( A) =<L>’ (..A.) [_A ()R e
bzo-0 pcfl'(- % % I‘:R ER % (o cro)

as a function of o/ o_can be employed to obtain a graphical solution of the optimum
stress ratio o/ o No attempt was made in this report to present such curves since

the value of ER was not defined,

If ER = ES, Eq. (64b) reduces to

3/2 5/2 1/2

o [E E E :
£ e -
b a-o pc\/!? % % S T

If the optimum stress is low then a good approximation (upper bound)

would be to assume that ER = EA. This results in
5/2 P
b2

ASD-TDR-62-763




D. TUBES IN TORSION

Tubes in torsion can be designed in the manner described for compression
members. Two types of problems will be considered. The first is a tube (e.g.,
control rod) where the diameter (d) wall thickness (t) are determined by con-
sidering the local and over-all stabilities. The second is for a cylindrical tube
(e.g., fuselage) where the thickness must be determined by considering the local
stability.

1, LONG TUBE
The over-all stability of a tube in torsion
is obtained by the use of Eq. 107 of Reference 1. This /v\
results in
2 \/Cc Cl3 ¢
T
T = 7 EI~Tch ER 7 (65a)
T e
where Ao = % d2 is the area enclosed by the median curve (65¢)
and t <<d. R
The local stability is determined by the use of Eqgs.
(A6) and (A7) of Reference 5, i.e.,
kth Ep 2 £ ¢ 5/4 d 1/2 ¢ 5/4 d 1/2 _
(@) (7) -x=(3) (1) (66a)
12 (1-,%) 58 \d ) R\d y)
where K = 23/4 rzkt/lz (1-v2) i (66b)
kt = ,85 F for simple supports
kt = .93 F for clamped supports
F = Factor to correlate theory and tests ~ .84 (Reference 5).

The effective modulus is assumed to be the secant modulus (E

= ES) for a tube in
torsion,

R
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Equating the two stabilities results in

E 5/4 1/2
= 2:0t = TR ‘/E; (li)= KEp (%) (%) (67a)
4/5
w (52) (3" 43) (e
The load equation (T =-g- %t T) (68)

expressed in nondimensional form becomes

4/5
T ="_(2>3 (L)L_JE— L(@) (2>17/5 Y3 6o
Vo N\ \T) T T A R T v

but from Eq. (65c), we have

( d) 2t (’ ‘/—3-)/"6 & (65b)
1/ E - E " E
sVCe (bs/E) (e Ea) Ea g
2 o 20 c i
(o] (o]
17/5 -4/5
E J/C .
E F () (%) C6TIED e
L% L4 % c s %o
° (Fig. 16)
The detail geometry is obtained as follows:
y 13
d =E—-S— (70a)
A /3c
o (]
o
RV N
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2. CYLINDRICAL TUBE

In many cases the tube is not too long and over-all stability does not
determine the design. The following design approach can be employed for the case
of a monocoque fuselage when the length and diameter are prescribed and it is desired
to determine the minimum wall thickness to preclude local instability., The load equa-
tion is

T=gdtr (68)

t = (L) 2———47_—— (71a)

Substituting Eq. (71a) into Eq. (68) and transforming to nondimensional form results
in

e W) () ) e

) 3::0 o/3 k¥/° E5/E, \/B—EA T

o

T s 5k (£)13/5( J3_EA>4/5: (E s )("/3_

3 = q p a_—')(Fig. 17)(72)
o o

The value of t can be determined by the equation

= T
‘"dz (r,ls)%
z ] MO

(73)

% M3

o

3

after the value of — = ¢/ o is determined from the graph,
o
o

E. BENDING OF BEAMS AND BEAM-LIKE PLATES
The minimum weight design of a beam is not as apparent as a column., Ina
column the axial stress in the member is independent of the distribution of the area

in the cross section, This does not apply to a beam since an area redistribution will
generally change the stress distribution, A redistribution of a given area of the beam -
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may decrease the stability of an element to increase another but it may also reduce

the resulting stresses so that the elements remain stable for larger moments., Thus

increasing the web of a heam at the expense of the flange will increase the allowable .
applied moment of a beam of constant area up to a point after which the loss of sta-

bility overrides the decrease in stress. The problem posed is how to determine this

point so as to design a beam to resist a given moment with a minimum weight.

The technique employed is to examine a beam which fajls because the compres-
sion stress exceeds the buckling of an element of the beam, Consider any beam: The
area, the inertia, and the extreme fiber distance can be expressed in terms of two
characteristic web dimensions d and t and a ratio of flange area to web area (z = wh/dt).
As an example, the cross-sectional properties of the channel section can be repre-
sented as follows:

A=a1dt=(1+22)dt
I = 113 d3t=(1/12+z/2) d3t
c = a6d=(1/2)d

The assumption is made that the extreme fiber stress can be calculated with sufficient
accuracy by employing linear bending theory (i.e., ¢ = Mc/I). This should be satis-
factory for optimum structures such as I-beams where the moment carrying capacity
is primarily concentrated in the flanges. In addition, it is assumed that the stress-
strain relationship is the same in tension and compression and that the neutral axis
does not shift even when the stresses become nonlinear.

The load equation is therefore

3
ca dt a
‘ 2
M':: O'I = 3 = —3 dta’ (74a)
¢ d ag
%

1/2

£.9, /
Letting t/d =(—ER—E-) define the thickness ratio which becomes unstable at the
t A

design stress results in a load index

1/2

a M E, C
6 ( A t) SRR e (74b)
3 o o p 0
03 cod o 0
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Similarly, the area can be expressed as an area index.

1/2
E C
A ( A t) (74c)
— o = V&,
a 1 d - p

For a given material and geometry, the area and weight of the beam are pro-
portional to d \/f_ whereas the moment carried by this beam is proportional to
3~/— (c/c ) Solvmg for d in Eq. (74b) and substituting the resulting solution into
Eq. (74c) results in

1/2 .2/3
1/2 B E, C
E C a t
At 6
A( a ) %3 7 ( h >
I T = = & JE_ (75a)
a, ( = ) p
[\ )
a6M EA Ct 1/2
Letting ( ) = X (75b)
a3 co co
and (°' ~/£_) ol (75¢)
co P [}
results in
(EA Ct )1/2
A
% st T
Y = d, Y&, = . 2/3 . (75d)
(=2

This equation can be plotted to determine the value of o/ a'o that would minimize this

expression which is proportional to the weight of the structure for a given material,
applied moment, and geometry. (See Fig. 18 for a typical plot for a corrugation plate
beam). ‘

The above analysis indicates that the optimum value of the extreme fiber stress
ratioo/ T which would minimize the weight of a given beam of a given material, de-

pends only upon the stress-strain relationship. The area distribution (z) and the
boundary conditions (C t) do not affect this optimum stress ratio.
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The other questions that must be resolved are what is the distribution of the
area in the cross section and what are the elemental dimensions that would result in
minimum weight when stressed to this optimum stress. The approach is to examine
various types of distributions and to determine which would result in a minimum
weight for a given moment. A complementary procedure is to note that a cross sec-
tion which can resist a higher moment can be reduced in weight to take the required
moment. It is immediately obvious that an area distribution which would maximize
the section modulus (I/a 6 d) while maintaining the area and thickness ratios would

reduce the stress level and result in 2 minimum weight. The technique is similar
to that of columns (maximum Ixx) in solving for the area distribution z. Sections of

constant thickness, such as bent-up sheet, can be determined in this manner.
Sections of variable thickness require some additional defining conditions. In an
arbitrary cross section the flange elements can be less stable, equally stable, or
more stable than the web element. If the flange is less stable, then some area could
be removed from the web and added to the flange; this would increase the moment
carrying capacity of the beam. If the flange is more stable, then area could be re-
moved from the flange and employed to increase the d=pth of the web. This would
increase the section modulus and moment carrying capacity of the beam. This sug-
gests that a minimum weight beam would have the flanges and webs equally stable up
to the optimum stress.

Thus the design of beam sections is somewhat similar to columns. The re-
quirements of maximum section modulus and equal stability result in defining the
cross-sectional properties in terms of two characteristic dimensions d and t. The
optimum stress ratio (o/ a'o) required to solve for d and t, however, can be deter-

mined as a function of the nonlinearity of the stress-strain relationship of the
material (B8), aund is presented in Figure 19. There is no need to resort to a P
vs. o /o, plot to determine this stress ratio.

1 BEAMS

The design procedure for beams is straightforward provided stability
designs the cross section. The description of the cross section in terms of the web
dimensions is determined by maximizing the section modulus for a stationary area
and thickness ratio. Values for typical sections are shown in Table 2. The optimum
stress ratio i8 determined with the aid of Figure 19 and the beam is designed for this
stress,

ASD-TDR-62~763 67




°p-X3AN! HLI3Q WNWILHO

0 ~ b < o
e g 0 N ~ N ® o

————--—.Jdd‘d—--—.--—111-—.-qd-—-dw-—.--—--w—--—-d-—|--—q-

'l

|
-10

log B
Optimum Stress, Depth, and Area Indices of a Beam

e

3 \ J

L V4 d
__.___P.__.._._.._-_...._...._..-Llpbh.._...[-l—p..._.pp._.-.._...._.-..
~ & = < " N = o

93 /¥ % —x3aN1 v3I¥V WNWILDO
2
1 1 1 1 1 1 A1 1
o o o o o (o] (o] (o)
~ © 0 < 2] Y] -

%/0-011vy SS3YLS WNWILDO

-15

-20

Figure 19,

68

ASD-TDR-62-763




o, WM A TR

Y TR

B

ettt -

T YNNI

TABLE 2 - GEOMETRIC FACTOR FOR BEAMS IN BENDING
- %
Section z a 1 a 3 a 6

(Bending about x axis, 3

see Table 1) wh/dt A/dt 1/d"t c/d
1-Beam .250 2.000 .333 .500
Channel I .500 2.000 .333 .500
Tee .625 2.250 .222 . 222%*
Angle (Sheet stiffener) M 1. 250 2,250 . 222 . 222%%

~ * The flange may have to be stiffened for bent-up sheet to ensure that ChZ C t(z t/h)2

where Ch stability constant for flange in compression

C ¢ = stability constant for web in bending
2
(Ct AL where k is <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>